3.11.100 \(\int \frac {1}{\sqrt {a+b x} \sqrt {-a d+b d x}} \, dx\)

Optimal. Leaf size=39 \[ \frac {2 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b d x-a d}}\right )}{b \sqrt {d}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {63, 217, 206} \begin {gather*} \frac {2 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b d x-a d}}\right )}{b \sqrt {d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*x]*Sqrt[-(a*d) + b*d*x]),x]

[Out]

(2*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/Sqrt[-(a*d) + b*d*x]])/(b*Sqrt[d])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b x} \sqrt {-a d+b d x}} \, dx &=\frac {2 \operatorname {Subst}\left (\int \frac {1}{\sqrt {-2 a d+d x^2}} \, dx,x,\sqrt {a+b x}\right )}{b}\\ &=\frac {2 \operatorname {Subst}\left (\int \frac {1}{1-d x^2} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {-a d+b d x}}\right )}{b}\\ &=\frac {2 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {-a d+b d x}}\right )}{b \sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 39, normalized size = 1.00 \begin {gather*} \frac {2 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b d x-a d}}\right )}{b \sqrt {d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b*x]*Sqrt[-(a*d) + b*d*x]),x]

[Out]

(2*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/Sqrt[-(a*d) + b*d*x]])/(b*Sqrt[d])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.08, size = 39, normalized size = 1.00 \begin {gather*} \frac {2 \tanh ^{-1}\left (\frac {\sqrt {b d x-a d}}{\sqrt {d} \sqrt {a+b x}}\right )}{b \sqrt {d}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(Sqrt[a + b*x]*Sqrt[-(a*d) + b*d*x]),x]

[Out]

(2*ArcTanh[Sqrt[-(a*d) + b*d*x]/(Sqrt[d]*Sqrt[a + b*x])])/(b*Sqrt[d])

________________________________________________________________________________________

fricas [A]  time = 1.27, size = 108, normalized size = 2.77 \begin {gather*} \left [\frac {\log \left (2 \, b^{2} d x^{2} + 2 \, \sqrt {b d x - a d} \sqrt {b x + a} b \sqrt {d} x - a^{2} d\right )}{2 \, b \sqrt {d}}, -\frac {\sqrt {-d} \arctan \left (\frac {\sqrt {b d x - a d} \sqrt {b x + a} b \sqrt {-d} x}{b^{2} d x^{2} - a^{2} d}\right )}{b d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(1/2)/(b*d*x-a*d)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(2*b^2*d*x^2 + 2*sqrt(b*d*x - a*d)*sqrt(b*x + a)*b*sqrt(d)*x - a^2*d)/(b*sqrt(d)), -sqrt(-d)*arctan(sq
rt(b*d*x - a*d)*sqrt(b*x + a)*b*sqrt(-d)*x/(b^2*d*x^2 - a^2*d))/(b*d)]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(1/2)/(b*d*x-a*d)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.01, size = 76, normalized size = 1.95 \begin {gather*} \frac {\sqrt {\left (b x +a \right ) \left (b d x -a d \right )}\, \ln \left (\frac {b^{2} d x}{\sqrt {b^{2} d}}+\sqrt {b^{2} d \,x^{2}-a^{2} d}\right )}{\sqrt {b x +a}\, \sqrt {b d x -a d}\, \sqrt {b^{2} d}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)^(1/2)/(b*d*x-a*d)^(1/2),x)

[Out]

((b*x+a)*(b*d*x-a*d))^(1/2)/(b*x+a)^(1/2)/(b*d*x-a*d)^(1/2)*ln(b^2*d*x/(b^2*d)^(1/2)+(b^2*d*x^2-a^2*d)^(1/2))/
(b^2*d)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.43, size = 39, normalized size = 1.00 \begin {gather*} \frac {\log \left (2 \, b^{2} d x + 2 \, \sqrt {b^{2} d x^{2} - a^{2} d} b \sqrt {d}\right )}{b \sqrt {d}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(1/2)/(b*d*x-a*d)^(1/2),x, algorithm="maxima")

[Out]

log(2*b^2*d*x + 2*sqrt(b^2*d*x^2 - a^2*d)*b*sqrt(d))/(b*sqrt(d))

________________________________________________________________________________________

mupad [B]  time = 0.22, size = 56, normalized size = 1.44 \begin {gather*} -\frac {4\,\mathrm {atan}\left (\frac {b\,\left (\sqrt {b\,d\,x-a\,d}-\sqrt {-a\,d}\right )}{\sqrt {-b^2\,d}\,\left (\sqrt {a+b\,x}-\sqrt {a}\right )}\right )}{\sqrt {-b^2\,d}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b*d*x - a*d)^(1/2)*(a + b*x)^(1/2)),x)

[Out]

-(4*atan((b*((b*d*x - a*d)^(1/2) - (-a*d)^(1/2)))/((-b^2*d)^(1/2)*((a + b*x)^(1/2) - a^(1/2)))))/(-b^2*d)^(1/2
)

________________________________________________________________________________________

sympy [C]  time = 4.77, size = 88, normalized size = 2.26 \begin {gather*} \frac {{G_{6, 6}^{6, 2}\left (\begin {matrix} \frac {1}{4}, \frac {3}{4} & \frac {1}{2}, \frac {1}{2}, 1, 1 \\0, \frac {1}{4}, \frac {1}{2}, \frac {3}{4}, 1, 0 & \end {matrix} \middle | {\frac {a^{2}}{b^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} b \sqrt {d}} - \frac {i {G_{6, 6}^{2, 6}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4}, 0, \frac {1}{4}, \frac {1}{2}, 1 & \\- \frac {1}{4}, \frac {1}{4} & - \frac {1}{2}, 0, 0, 0 \end {matrix} \middle | {\frac {a^{2} e^{2 i \pi }}{b^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} b \sqrt {d}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)**(1/2)/(b*d*x-a*d)**(1/2),x)

[Out]

meijerg(((1/4, 3/4), (1/2, 1/2, 1, 1)), ((0, 1/4, 1/2, 3/4, 1, 0), ()), a**2/(b**2*x**2))/(4*pi**(3/2)*b*sqrt(
d)) - I*meijerg(((-1/2, -1/4, 0, 1/4, 1/2, 1), ()), ((-1/4, 1/4), (-1/2, 0, 0, 0)), a**2*exp_polar(2*I*pi)/(b*
*2*x**2))/(4*pi**(3/2)*b*sqrt(d))

________________________________________________________________________________________